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ABSTRACT

There are now over one million Unix sites and the pace at which new installations are

added is steadily increasing. Along with this increase, comes a need to develop simple,

efficient, effective and adaptable ways of simultaneously collecting real-time diagnostic

and performance data. This need exists because distributed systems can give rise to

complex failure situations that are often un-identifiable with single-machine diagnostic

software. The simultaneous collection of error and performance data is also important

for research in failure prediction and error/performance studies. This paper introduces

a portable method to concurrently collect real-time diagnostic and performance data

on a distributed UNIX system. The combined diagnostic/performance data collection

is implemented on a distributed multi-computer system using SUN4's as servers. The

approach uses existing Unix system facilities to gather system dependability information

such as error and crash reports. In addition, performance data such as CPU utilization,

disk usage, I/O transfer rate and network contention is also collected. In the future,

the collected data will be used to identify dependability bottlenecks and to analyze the

impact of failures on system performance.
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1. INTRODUCTION

The growth in distributed systems spurred by low-cost microprocessor and intercon-

nection technology has made workstation/server systems economically viable in many

research and academic environments. Workstation/server systems permit computer users

to share CPUs, disks and peripheral devices. They also provide numerous services such

as electronic mail, distributed databases, parallel computing, and high speed communi-

cation.

1.1 Distributed Computer Environment

The distributed nature of the system is one of its major advantages. However, it

is a disadvantage when it comes to diagnosis of errors and general maintenance for the

following reasons:
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• At present, there are no accurate available network-wide facilities to analyze the

multi-computer system after a crash. Each network is a unique collection of prod-

ucts from multiple vendors with no single vendor taking responsibility for the in-

tegrity of the entire network. When a fault occurs in a distributed environment,

the traditional fault diagnosis process requires system maintenance personnel or

diagnostician to log into the suspected workstation or server in order to determine

the cause of the fault. The diagnostic procedure might involve the examination

of the system logs or the running of diagnostic software. This is not only time

consuming but also requires a great deal of experience. The procedure is especially

troublesome and the error often goes undiscovered when the problem arises from

inter-machine activity.

• When a fault occurs in a distributed environment, most users either report the local

system's problem, reboot the local workstation, or simply use another workstation.

Contrast this to the response on a dedicated machine where the user will normally

contact the system administrator who will log the problem and fix it. By ignoring

the problem in the distributed environment, valuable diagnosis data is discarded

and the error often remains latent.

• Previous research [2], [4] has shown that system failure rate is dependent on resource

usage and that increased resource usage is accompanied by an increased failure rate.

Physically, this dependence may be caused by several factors:
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- Increasedusageexercisesmoreof the system resulting in a higher probability

of detecting faults.

- Increased usage results in more stress on the hardware: higher levels of elec-

tronic noise, temperature, and mechanical stress.

- Increased usage increases the likelihood of human error which can lead to

system failure.

Through load balancing, the distributed system increases the utilization of shared

resources. Therefore, these resources become more susceptible to faults. A recent

study has shown that nearly half of all failures in a distributed system were due to

errors in shared resources [25].

• Most diagnosticians look for unusual patterns in the error log when performing

diagnosis. Certain patterns or symptoms become trouble-shooting rules in the

diagnostic community. For example, the frequent appearance of the failure of a

disk block access indicates that a particular block is corrupted. Frequent parity

error messages indicate a memory board problem. These trouble-shooting patterns

may become more complex in a distributed system. If the faulty machines are

diagnosed individually, the network-wide patterns may not be identified.

A globle diagnosis approach may be addressed with an automatic centralized mon-

itoring tool which periodically gathers performance data in addition to error and

crash logs from all units in the network. The collected data can provide a total



network-wide view of the system and give the diagnostician the means of isolating

and identifying inter-machine problems. Because the monitor could be automated,

information would not be lost when a user decides not to report problems. In

addition, the orderly logging of all information allows the diagnostician to identify

network-wide trouble-shooting patterns. The collection of system performance data

will also be extremely useful. Past studies have shown that information on system

status at the time of the system failure is important for system diagnosis. Also,

by collecting performance data, the insight into the relationship between system

activity and errors can be gained.

This thesis proposes an automated distributed performance and error software mon-

itor for Unix-based distributed networks. The monitor has been implemented on a

network of workstations and other computing resources at the Center for Reliable

and High-Performance Computing (CRHC). The key aspects of this project are:

1. The monitor collects, analyzes, and filters all logs created from system crashes.

2. The monitor collects and filters all error�diagnostic data.

3. The monitor periodically colIects performance data that characterizes the

workload of the system.

4. The monitor is constructed mainly from the existing system facilities. How-

ever, the final monitor is not just a conglomeration of all available system

facilities. Extensive study and consultation with performance analysts was



5

conductedbefore choosingand modifying the operating system and related

facilities in order to collect meaningful data.

5. Because the monitor is constructed from existing system facilities, it is com-

pletely portable to any Unix machines. All facilities and modifications are

written in either Unix commands or C shell.

6. All data collection occurs on-line.

7. All monitoring functions have a minimal impact on system workload.

In the next section related work will be summarized. Following this, in chapter 3, the sys-

tem monitored will be summarized. Chapter 4 introduces the monitor and data format.

The following three chapters 5, 6 and 7, describe three types of information collected in

crash, error/diagnostic and performance, respectively.

1.2 Related Research

The major thrust of our work to date has been the creation of a monitor which col-

lects both error and performance data. The data are collected with the future goal of

automatic diagnosis and failure prediction in mind. Research in the diagnosis of dis-

tributed environments was first done at the Xerox Palo Alto Research Center (PARC)

[20]. There METRIC was developed as a kernel software measurement system for a

network of NOVAsT. Measurement data was communicated over the Ethernet [20]. Mea-

surement events, which consisted of mini-snapshots of the system state, provided an

indication about what was happening on the system. A few years later, an internal
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project wasinitiated at Xerox to diagnosecomputer hardwarefaults [18]. The diagnostic

system consistedof a diagnostic serverand over two hundred Dandelion workstations.

Eachworkstation gathered its own eventsin a log and periodically reported then to the

server. However, this work concentratedon collectederror eventsand did not consider

performance.

Predicting future errorsfrom the logsof pasterrorshasalsobeeninvestigated[26]. For

instance, a failure prediction method basedon intermittent error characteristicsof Unix

machineswas investigatedby T. T. Lin [17]. In the study, an on-line diagnostic system

on file servers interconnectedby an IBM token ring was implemented. Two software

systems,the Agent and Diagserver,were developedfor the data collection phase.

In measurement-basedanalyses,an important issueis the interaction betweenwork-

load and dependability. Past studies haveshown that systemfailures are dependenton

the usageof the system resources[2], [4], [3]. For instance, real measurementshave

shownthat CPU-related failures increaseexponentially with the resourceusageafter the

system utilization reachesa saturation point [11]. Therefore,measurementsof the work-

load characteristics in terms of resourceusageis an important aspect in on-line failure

diagnosisand prediction.

Severalanalytical models that take into account resource-usageeffectshave beenre-

cently proposedin [23], [1]. The issuehasalsobeenpartially exploredthrough measurement-

basedanalytical models [8]. In the research,analytical modeling and measurementswere

combined to developmeasurement-basedreliability/performability models. The results
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showedthat asemi-Markovprocess,asopposedto a Markov process,wasbetter to model

system behavior.

A measurement-basedstudy on the dependability of threedifferentoperating systems,

the IBM/MVS system, the VAX/VMS distributed system, and the Tandem Guardian

fault-tolerant system wasinvestigated in [15]. The study showedthat I/O management

and program flow control are the major sourcesof softwareproblems in the IBM/MVS

and VAX/VMS operating systems,while memory managementis the major sourceof

softwareproblems in the Tandem GUARDIN operating system.

In the abov_measurement-basedstudies, real data collectedfrom the computer sys-

tems played an important role. It is crucial to have a monitor that can automatically

collect performance,error and crashdata. Our monitoring facility is developedfor this

purpose. We hope that the collected information present in the Unix system will help

provide to predict the occurrenceof errorsand diagnosethe systemwhen anerror occurs.
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2. MEASUREMENT ENVIRONMENT AND COLLECTED DATA FORMAT

2.1 SUN Distributed System

The Sun Network File System(NFS) providesa facility for sharing files in a hetero-

geneousenvironmentof machines,operating systems,application softwareand networks.

Sharing is accomplishedthrough mounting a remote file system. Oncea remote file sys-

tem is mounted, it appearsto be a part of the existingfile systemhierarchy. The network

file systemavoidsthe problemof eachnodein a network maintaining its own file system

and thereby duplicating resources.

Figure 1 provides an example of serversand workstations with their file systems

mounted on a NFS server. All file transfers take place over the Ethernet. A machine

that provides resourcesto the network is calledserver,while a machineemploying these

resourcesis called a client. A machinemay be both a serverand a client. For instance,

ServerTwo in Figure 2.1 can accessfiles on the disk of ServerOne (making it a client)

and also serveits clients (making it a server).
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Figure 2.1: Servers and Clients

Both serversand clientsrun instancesof the sarne copy of the distributedSUN op-

erating system. Each clientcan have a limited sizeof localhard disk (normal root and

swap), but most large filesystems and other shared physical resources reside on the

servers.The serversprovide large,high-speed disks and network management. Sharing

the system resources among many users in a distributedenvironment dramatically in-

creases the usage of CPUs, disks,and the network. Obviously, the entire SUN system

performance isaffectedifthe servercannot provide the required functions.
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2.2 CRHC Local Network

The CRHC network (Figure 2.2) monitored for this study is a typical local network

integrated with various components. Following is a list of the machines connected to the

CRHC network:

• Three SUN 4/490 and one SUN 4/280 servers, each with 32M ram and 3 G bytes

disk.

• Seventy sun 3, sparc I or sparc II workstations.

• One ENCORE Multimax 510 with 64M ram and 8 processors.

• One INTEL ipsc/2 Hypercube.

• Four VAX and DEC workstations.

• Five HP9000 workstations.

• Four TI Explorer and symbolics workstations.

• A Tandem fault tolerant TMR system (Integrity $2).

• Several IBM-AT, 386, RT, Mac II and four laser printers.

The four SUN 4 servers together provide physical space to store most user file systems

and system utilities. Each server has two Ethernet controllers and serves as a gateway

to their subnet or cluster of workstations. Each subnet consists of 15-20 workstations
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or other types of machines.The serversalso haveCD, 9 track 1/2, 1/4 and 8mm tape

drives available to them.

The sharing of certain common software programs is done to save space. For instance,

there are only two physical copies of all/usr/iocal software residing on the network. Uni-

form access is provided to any user through the NFS sharing. High level communication

between machines is based on a client-server model using the remote procedure call (RPC)

implemented on top of the internet protocols.

2.3 General Monitoring Environment

In this section, the software monitor is classified and described in a high-level manner.

A brief description of the format used by the monitor for the collected data is then given.

All machines in the CRHC network can have a diagnostics and performance monitor.

However, SUN 4 servers play the most important role, while most other machines in

the network are diskless(without local disk) or dataless ( with small local disk mainly

serving swap functions) workstations, or other types of machines, on which only one or

two users do limited computations. Our implementation makes use of existing operating

system facilities, modifies some system configuration files and sets up a software monitor

to collect the information on system crash, system error log and system performance on

the sun4 servers. At the same time, the system error log information on all workstations

are also collected.
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2.3.1 SoftwareMonitor

The diagnostic and performancemonitors can be classified in terms of software, hard-

ware and hybrid. Hardware monitors typically are the least intrusive but most expensive

and inflexible. Hybrid monitors normally detect events with hardware, and record them

using software. Although, more flexible than hardware monitors, they too require ad-

ditional hardware and thus lack portability. Because of the ease of implementation and

portability [5], the diagnostic monitors implemented for this study are all software based.

Implementing the proposed monitors consisted of modifying the operating system

and then reading contents of certain locations or tables in the kernel memory. When

modifying the code, we were careful to maintain the integrity of the operating system

and to use event-detection and data-collection techniques that did not appreciably alter

the workload characteristics of the measured system.

Diagnostic monitors for distributed systems can also be divided according to topology

and functionality into three classes: centralized, distributed, and hybrid. In the central-

ized diagnostic system, error logs generated from each node are collected and saved at a

centralized site. This topology has been widely used in server/client distributed systems.

In the distributed diagnostic system, error logs are collected and processed immediately

by each sub-system. This arrangement does not impact the network as severely as a cen-

tralized diagnostic system. A hybrid monitor is a mixture of the above two approaches.

Part of diagnostic system resides on individual nodes and part on a centralized diagnostic

server.
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The monitor presented in this study is a distributed diagnostic system. Based on the

physical structure imposed by the distributed environment, the diagnostic system resides

on individual servers and one server serves as a centralized diagnostic database center.

Most events are collected, processed and diagnosed immediately by the servers. The error

log collected among workstations are also transferred to its server. This arrangement

was chosen for a number of reasons. First, because there is a large amount of data

being collected (crash, error and performance), we thought it wise to avoid excessive

network traffic caused by the monitors. Second, the distributed arrangement allows

each server to run diagnostic independently and keep the data on the local disk. Third,

with distributing the monitors, a single failure will not cause system monitoring to stop

completely. Finally, a distributed monitor can be easily expanded as the local area net

grows.

2.4 Data Collected and Format

The monitors implemented on the system collect three types of data: system crash

data, system diagnostic data, and system performance data. System crash data is col-

lected each time the system fails. Phenomenon or error data is collected for each error.

Examples of these are parity errors or abnormal behavior. The implemented monitors

also collect performance data (e.g., CPU utilizations, disk usage) continuously. This sec-

tion provides an overview of the format used for each of these types of data. Detailed

information will be given in the following sections.
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Table'2.1: Crash Data 1

,,, m, ........

Summary of crash hostid time system-age panic-info regs

system stack current-stack-fp end-of-stack

Processes table pid ppid pri cpu event p-name p-flags

users structures p-ptr p-signal ofile-addr start-time

open file table f-type f-ops date-offset fop-flags

m-buffer usages streams queues mblocks dblocks buffers

Table 2.2: Crash Data 2

date-time-crash

ymddhhmmss

12

hostid [ p-size I f-size I pc-number

XX XXXX XXXX XXXXXXXXX

2 4 4 10

sp-number panic-mess

XXXXXXXXX a_aaaaaaaa

10 30

1. System crash data

There are two files created when the system crashes: A large detailed file and

a small summary file. The large file is produced by crash script commands and

contains the information in Table 2.1.

The small file is a crash log file, which is created from the large crash data file. The

crash log data format is shown in Table 2.2, where:

date-time-crash :The date and time of the crash

hostid :The id of the hosts

( l=bach, 2=dwarfs, 3=polaris, 4=roundup )

p-size :Process table size (number of process is in the system)
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Table 2.3: Diagnostic Data 1

II date I hostname ] program-name I error-information ]1

f-size

pc-number

sp-number

panic-messages

:Open file table size (number of files )

:Program Counter

:Stack pointer

:The panic-messages of the system when the crash occurs

. System diagnostic data

Every error or warning message generated (diagnostic messages) by the system may

be important for diagnostic purposes. Each message is collected by the syslogd and

logged in the format shown in Table 2.3, where:

date

hostname

program-name :

error-infor

The time of the error occurrence

Machine name where syslogd was running

The program or daemon name that detected the error

A short message about the error

A filter program was written to eliminate all useless information in the error log file.

Alex program also was worked out to decode the log file into numeric format which

can be used more efficient by SAS or other statistical programming languages. The



I7

Table 2.4: Diagnostic Data 2

time hostid prog-num Iog-num error-messages

yymmddhhmmss xx xxxxx xxxx _aa_aaaa

decoded log messages contain two parts: a string of decimal numbers and a short

error messages. The format is shown in Table 2.4, where

time :The time of the error

hostid :hostname (1=bach, 2=dwarfs, 3=polaris, 4=roundup)

prog-num:the program or process where error is detected

log-hum :the catalog number of the error

messages :The brief-messages of the error in ASCII

3. System performance data

The key components in the performance data of SUN 4 servers are collected as

follows (Table 2.5).
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Table 2.5: PerformanceData

II Utilization ]Memory Usage I System Tables I Network Stat II

Utilization: : CPU disk and tty utilizations

Memory Usage : Allocated virtual-memory vs. available virtual-memory

System Tables : Number of files, number of inode, number

of processes and swap space usage

Network Stat : network traffic info: inpkts, outpkts, errors and collisions



19

3. SYSTEM CRASH ANALYSIS

The goal of the crash analysis is to record meaningful information when a crash

occurs. The information will be be used to determine the causeof a system crash. The

information is also useful in later studies of failure prediction and fault-performance

correlations. The SUN OSreacts to a systemcrash in a number of predefined and user

specifiedways. This chapter will first outline the immediate system responseto a crash

in software and hardware. Following this, the various facilities that SUN provides to

analyzea crash will be discussed.Finally, details of our monitoring protocol and what

is finally loggedin the event of a systemcrashwill be presented.

3.1 Hardwareand SoftwareCrash Response

A system crashmay have a variety of causes.For instance, faulty hardware, system

softwareerror, powersupplyerror, devicedriver error or mechanicalerror. In this section,

the detailed responseof the system to hardware errors and system softwareerrors will

be given.
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The systemmust first detect the error beforeit canmakearesponse.Error detection

is usually assistedby built in hardware and softwaredetection mechanisms. Hardware

detection mechanismsare basedon redundancy techniquessuchas error detection and

correction codes. Softwaredetection mechanismsinclude consistency checks and the

repetitive execution of code. The Unix operating system executes a large number of

internal consistency checks on the system image. Device drivers will retry before reporting

a fatal error. These internal check failures and retry messages are all recorded in a system

error log file.

In general, at the detection of a system fault, the internal processor registers will be

saved and an error message will be printed on the console and in the system error log.

The Sun 4 RISC architecture handles most hardware faults through traps and in-

terrupts. When a hardware error occurs during an instruction execution, the hardware

writes a value into the trap type field of the Trap Base Register (TBR). This then gen-

erates the address of a trap handling routine. The error handling program then checks

the error type and prints out an error message.

An example of a hardware error will make the above clear. Suppose there is a memory

error during an instruction or data fetch. This will cause a detection of the memory

address-not-aligned trap. The hardware will then enter an error state and a value will

be written into the trap type field of the TBR. This uniquely identifies the address-not-

aligned trap. This number also serves as an offset into the table whose starting address

is given in the TBR.
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The control is transferred to the trap through the following steps:

1. Disable the trap.

2. Changethe ProcessorState Register (PSR).

3. Decrementthe Current Window Pointer (CWP) which points to the current active

register window.

4. Savethe Program Counter (PC) and next Program Counter(nPC) which holds the

next instruction to be executedassuminga trap doesnot occur.

5. Write into the PC the contentsof TBR, and into the nPC the contentsof TBR+4.

The trap routine itself will first determine if the error is uncorrectable. Error infor-

mation will then be printed to the system log. This information is retained for off-line

analysis. If the error type is unrecoverable_the system will enter a panic state. The

panic state causes the system crash.

If a software error is detected, through an internal consistency check, the system will

also panic. A short message indicating which consistency check failed and a two-word

description of the inconsistency is printed out. All these information are retained by

our monitor. For example, a common consistency check is the program which checks

the boundary of a virtual memory address (Figure 3). If an error is detected, the panic

routine is called.

The panic routine will print out the error message and then reboot the machine.
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Figure 3.1: Virtual Memory CheckProgram

/* set up devices */configure() ;

maxmem s freemem;

v = econtig;

i = nproc * ptob(SEGU_PAGES);

if (v + i > (caddr_t) MDEVBASE)

panic("insufficient virtual space for segu: nproc too big?");

segu - seg_alloc(Ekas, v, i);

if (segu -- NULL)

panic("cannot allocate segu\n");

if (segu_create(segu, (caddr_t)NULL) !-O)

panic("segu_create segu") ;

It is critical for the monitor to distinguish between a reboot caused by a panic and a

reboot initiated by a user. The next section details how we have modified the system

commands to make this distinction clear.

3.2 Design and Implementation of Crash Analysis

Once a crash has occurred, the panic routine is run and a system reboot is enacted.

The system boot up procedure loads the kernel into memory by the PROM monitor.

Control is then transferred to the kernel and the machine resumes normal execution.
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However,in this way, there is no record (except the small error message)of the state of

the machinebeforethe crash. To remedythis, the boot procedurewaschangedto forces

a crashcoredump.

The coredump is a copyof the memoryimagesavedin secondarystorage. To execute

a core dump the SUN OS system first disables virtual-address translation. Then the

processorpriority is raisedto its highest level to block out anydevice interrupts. Finally,

the contentsof physicalmemory areplaced in secondarystorage.

Becausethe coredump imageis large, the boot up procedure is appendedwith the

savecore command which moves the core dump image to a larger disk partition and logs

the reboot event was performed in the syslog file.

Commands have also been added which automatically sends mail to the system ad-

ministrator after each core dump and reboot. It is then the administrator's duty to

analyze the core dump and produce the files which summarize the crash in an orderly

manner. A script which was created to analyze the core dump and produce the summary

of the crash will be described shortly. First, it should be noted that a system reboot is

often executed with the system shutdown command even though a system crash has not

occurred. To maintain the integrity of our system logs, the shutdown command has been

rewritten to require the reason for the shutdown to be specified. In this way, reboots

caused by system crashes and those caused by other reasons will not be confused.

The analysis of the core dump by the system administrator was automated with a

script command which can be executed by the administrator. Two Unix facilities were
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consideredas tools for the coredump analysis: adb and crash. Adb is a system utility

for interactive, generai-purpose program debugging. The utility can treat the OS kernel

as an executable program and provide a controlled environment for the execution of the

kernel. It can also be used to examine the image of the system memory map. However,

adb requires extensive familiarity with the operating system source code. We decided

not to use it as a vehicle in analyzing the crash core dump.

The crash program is a tool which examines the memory image of a live or crashed

system kernel. It displays the values of the system control structures, tables, and other

pertinent information. We decided to use the crash program as a vehicle for prelimi-

nary crash analysis because it is based on a set of fixed commands and gives detailed

information about the usage of system resources and control tables.

Each core dump is analyzed by a script of chosen crash commands. This uniform shell

script provides a consistent analysis tool to provide an organized summary of each crash.

The shell script is run by the administrator after receiving the mail about a system crash.

The shell script provides two outputs for each crash, a long and short

form, in a file called crash.(date).

The long form of the crash summary contains the following:

Crash summary information: Operation system name and version, hostname, hard-

ware architecture, time of crash, age of system, panic messages, program counter

address and system stack address.
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Information on system resources usage: An image of the dynamic memory buffer

reallocation, an image of context register allocation information, an image of al-

located streams data block headers, the size of page, proc, datab, dblk, dblock,

linkblk, mblk, mblock, msgb queue, stdata, and streams.

Information of every process behavior: Table information for each process includ-

ing process status, tsize, dsize, ssize, maxrssize, user time, system time, start time,

signal disposition, open files and profile flags

Information of the file system usage: Information on the file table including the file

no-delay flag and the asynchronous flag. Also a reference and message count for

each file to indicate how many processes are referencing the file and how many

interprocess communication transact with the file. Also recorded are all mounted

file systems, as well as operations, addresses and flags of the mounted file systems.

Physical and virtual address information: Stack information of the users, the ker-

nel and the interrupts. And all physical and vitual address information.

The long form holds too much information for some purposes, so a short form was

also created (as shown in Section 2.4). This log contains a one line entry which gives

brief information on each system crash.

For instance, 910520_32IOiOIO1380582f80a674cf832e9fSialloc: dup alloc

where:

910520232101 :Crash happened at 1991 May 20 23 hour 21 minute 1 second
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01

0138

0582

f80a674c

f832e9f8

ialloc: dupalloc

:Hostid 1=bach

:There are 138 process in system

:There are 582 files in system.

:Program Counter is f80a674c.

:Stack pointer is f832e9f8.

:Panic-messages.

A more detailed example of crash analysis is given in the Appendix of the thesis.
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4. SYSTEM DIAGNOSTIC DATA COLLECTION

4.1 SystemError Log

Often times an error or abnormal behavior occurs but doesnot result in a system

crash. For instance, a retry on a device driver may be successful, or a parity error may

be solved in hardware. While not causing a system crash, these errors may be indicative

of failures to come and are helpful in future crash diagnosis. These errors may also result

in performance degradation. Therefore, it is important to systematically collect these

information. This section will describe how our monitor collects this error/diagnostic

information.

When an error occurs, a one line error message is logged in a system error log called

the message buffer (rnsgbu]). The message buffer is allocated early in the bootstrapping

of the system, and is placed in high memory so that it can be located after a reboot.

This allows messages generated just before a crash to be saved. In prior releases of the

SUN OS the rnsgbuf could only be read through/dev/kmem with the dmesg command.
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The commandwas troublesome because it could not be synchronized properly with the

generation of new diagnostic messages and did not provide the time and date of the

message. This was a major obstacle in comprehensive diagnostic monitoring facilities.

This problem was solved with the addition of a special device,/dev/log, providing a

read only interface to the msgbuf. With the/dev/log in place, the msgbuf can be read

by a user program. The reading of the msgbuf is done with a daemon called syslogd.

Syslogd collects error messages from/dev/log, from an Internet address family socket

specified in/etc/services, and from the special device/dev/klog for kernel messages.

A large number of the error messages handled by the syslogd are superfluous. To

filter out the useless messages, the system provides the syslog configure file: syslog.conf.

This file allows the system to choose to forward error messages to appropriate log files

or users. The file also assigns one of the following priorities to each error message.

1. emerg: Panic condition. Normally broadcast to all users.

2. alert: Conditions corrected immediately.

3. crit: Warnings about critical conditions, such as hard device errors.

4. err: Other errors.

5. warning: Warning messages (uncritical).

6. notice: Not an error conditions, but may require special handling.

7. info: Informational messages.
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Table 4.1: Error Log Configuration

diagniotic messages forward to
*.err;kern.debug;auth.notice;user.none /dev/console

*.err;kern.debug; user.none /var/adm/messages .....

auth.warning; daemon; user.none /var/adm/auth.log

mail.crit; user.none /var/spool/mqueue/log

lpr.debug /var/adm/lpd-errs

*.alert; kern.err;d_emon.err;user.none operator

*.alert; user.none root

*.emerg; user.none *

8. debug: Messages for program debugging.

9. none: Do not send message.

The syslog.config file was configured in our implementation to send messages as in-

dicated in Table 6. The table shows that all diagnostic error messages are recorded in a

file entitled/var/adm/messages. All errors at the err level severity or higher print out

the error message on the console and also log the message into the/var/adm/messages

file. A user login authorization system warning level or higher will be forwarded to

/var/adm/auth.log. Mail and printer errors will be forwarded to/var/spool/mqueue/log

and/var/adm/lpd-err, respectively. The users root and operator are informed of any alert

level messages. All users will be informed by any emergency level messages excluding

user messages.
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The amount of data collected is still hugewith this facility. To prevent the collected

data from filling up the root partition, the data must be archivedperiodically. This is

doneby the/usr/lib/newsyslog routine which is run automatically by the cron process.

The configuration file allows a certain amount of filtering, but a significant portion

of the messagescollectedare still unrelated to the hardware and softwareerrors. These

have beeneliminated with a post-filtering program.

For analysispurposes,Wecatagorizedthe remainingmessagesinto sevengroups: cpu,

disk, memory, peripheral device, network, softwareand miscellaneous.Each messageis

representedby the format shown in Section 4.2. In order to facilitate data processing

and analysis,a decodingprogram waswritten which convertseacherror messageinto a

string of decimalnumbers. The decimaldata can then beusedas input data for SASor

other statistical languagesto perform systematicanalysis.

4.2 The Implementation of Distributed Diagnostic System

The diagnostic information collecting is basedon long term. The basic thrust of our

efforts is to get as much system diagnosticsinformation as possible. Becausein most

cases,oncedata are collected,it is not possibleto requestmore information.

Our implementation of the diagnostic data collection is based on the distributed

diagnostic system (Fig 5.1). The diagnostic information generatedfrom eachhost will

be collectedin its server.The distributed diagnostic systemincludes four steps.
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Figure 4.1: Distributed Diagnostic System
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• First, each machine (server and workstations) logs diagnostic information in a local

file.

• Second, The server collects diagnostic information from machines on its subnet

which consists of 15-20 workstations. The server will independently and regularly

reformat and reallocate the collected data on its disk.

• Third, after a fixed interval (two weeks in our case), the servers transfer all diagnos-

tic information collected to one specific machine--a centralized diagnostic database

site.

• The centralized diagnostic database site processes all information collected from

the CRHC network (about 70 of servers or workstations). It creates an integrated

diagnostic database file which records all diagnostic information collected in the

CRHC network.

All the four steps are done automatically by the computer system. Several system

utilities have been modified to help to automate the diagnostic process.

First, on each diagnostic server,/usr/lib/newsyslog run automatically by cron process

which moves old log file messages to a specific disk partition. The current diagnostic file

always contains the most recently error-log information.

Significant portion of the diagnostic messages are not related to hardware and software

error. Thus a filter program is needed to eliminate all useless messages. The function of

the filter is to examine the error patterns and delete the entries that match the strings
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Table 4.2: Final Diagnostic Data Format

[[ date I hostname I servername I program-name I[ error-information [[

we want to delete. The filter program runs on each diagnostic server to produce the

minimized final diagnostic data.

In order to have the uniform data formate, a C shell program has been worked out

to convert diagnostic data into the format shown in Table 4.2, where:

date : The time at which error occurred.

hostname : Machine name where syslogd was running.

servername : Diagnostic server name where machine reported error.

program-name : The program or daemon name that detected the error.

error-infor : A short message about the error.

At the centralized diagnostic database site, all collected diagnostic data from machines

in the CRHC network are organized in chronicle. The data will permanently reside on

the site for further analysis.
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5. SYSTEM PERFORMANCE DATA COLLECTION

As mentionedbefore,empirical studiesuncovereda relation betweenthe workload on

a system and faults experiencedby the system [2][9][11]. The performanceor workload

data of the systemmay thereforebeusefulin predicting faults or in diagnosingthe system

after a fault. Thus, workload performancedata is collectedalong with the crash and

diagnostic data by the monitor. This section summarizesthe performance information

collected.

The performanceof the distributed Unix system is summarizedby the usageof the

individual resources.The following five componentswere chosento summarizethe per-

formance of eachindividual machine.

1. CPU utilization

2. Disk I/O usages

3. Network I/O transfer rate

4. Ram and virtual memory usage
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5. File cacheefficiency

There are varioussystem utilities in Unix which can be used to collect the performance

data of individual components. For our situation, it is important to collect data over a

long period of time. A key factor in choosing t-he monitoring software is to minimize the

performance perturbation of the collection facility. The execution of the data collection

should have no adverse effect on the regular use of the system.

User level commands were chosen to collect performance data because they allow

great flexibility and portability. In addition, the commands could be easily added and

dropped on the various machines. Performance data is collected with a shell script that

executs the chosen system commands every 10 minutes. The following commands were

used.

IOSTAT The iostat command quantifies the I/O of terminals and hard disks. It also

quantifies the percentage of time the CPU's spend in various states. For each disk,

the number of seeks and data transfers completed and the number of words trans-

ferred are counted; for the terminals, the number of input and output characters

are counted. Also, at each clock tick, the state of each disk is examined and a tally

is made if the disk is active. Transfer rates for the disks are also measured. For

example, a typical iostat uotput is:

try xdO xdl xd4 xd5 ¢pu

_in _ou_ bps tps msps bps tps msps bps tps msps bps tps msps us ni sy id

0 1 12 2 13.2 6 1 15.8 3 0 17.4 30 8 12.1 14 11 13 62
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Table 5.1: Iostat Data Format

TTY Disk 1 Disk 2 Disk 3

Usage Usage Usage Usage

CPU

Usage

where:

tin: The number of characters read in from the terminals.

write: The number of characters written out to the terminals.

rps: The number of reads per second for each disk.

wps: The number of writes per second for each disk.

utih The Disk utilization.

us: The percentage of time the system had spent in the user mode.

ni: The percentage of time the system was in user mode running low priority

processes.

sys: The percentage of time the system had spent in the system mode.

id: The percentage of time the system was idle.

Table 5.1 summarizes the output of iostat.

PSTAT The pstat command records the contents of various kernel tables such as the

system inode table, text table, process table, and open file table. The command

also displays status information for all terminals and swap space usage.
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Table 5.2: Pstat Data Format

l[ files ] inodes I processes I swap-spase

For example, the pstat returns swap space information as follows:

5304k alloca_ed + 528k reserved - 5832k used, 132824k available

This indicates that the system is using 5832k of virtual memory and there is 132824k

of virtual memory available.

An example of a Kernel table is the following:

17e/ss_ ]Ues 291�see inodes 59/138 processes 586_/138656 swap

where:

The first number is the number of table system used and second number is the

number of table system can provide.

The table also indicates that the system is currently running 59 processes but could

support an additional 69 processes if necessary.

Table 5.2 summarizes all the information collected by pstat for our monitoring

implementation.

NETSTAT The netstat command quantifies contention on the network. The command

provides a list of active sockets for each protocol and statistics of various other
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Table 5.3: Netstat Data Format

ethernet-controller 1 ethernet-controller loopback

(CRHC-net) ..... serversubnet localhost
traffic star traffic stat

network data structures.

following:

For example, the information of ethernet traffic is the

Name Net/Dest Address Ipkts Ierrs Opkts Oerrs CoUis Queue

ie0 1500 uiuc-crhc-net4roundup 2202170 811 2537605 14 784 0

iel 1500 uiuc-crhc-net roundup 3787908 183 4212515 0 21464 0

lo0 1536 loopback-net localhost 2253 0 2253 0 0 0

The data is the traffic statistics which shows how much input, output, error and

collision on each ethernet interface.

The results from this command are summarized in Table 5.3.

The vmstat command was considered but it was found that the data produced was

prodigious and the perturbation caused was high. Timing measurements have been

conducted on the performance measurement facilities and it has been determined that

the perturbation caused by the monitoring is small. An interval of ten minutes was

chosen to reduce this perturbation and the amount of data collected. Ten minutes is

short enough to collect meaningful information.
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6. CONCLUSION

This thesis has introduced a flexible, portable, distributed monitoring facility that col-

lects system crash data, diagnostic/error messages, and performance data. The monitor

has been implemented on a local network consisting of a large number of Sun worksta-

tions as well as a variety of other computing resources such as the Encore Multimax.

To maintain portability, the monitor was constructed from existing system Unix facil-

ities. All collection are automated and done on-line. Care was taken to minimize the

perturbation caused by the monitoring software.

The organized collection of data after a system crash required the system bootup

procedure to be modified to perform a core dump, move the dump to a large partition,

and send mail to administrator. The system shutdown command was also modified

to record the exact reason for shutdown (logging purposes). A crash command script

which analyzes the core dump was also written. The collection of error/diagnostic data

required the use of the syslogd daemon and the creation of filtering and decoding software.
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Performancedata collection was accomplishedwith the periodic invocation of iostat,

netstat, and pstat.

An important issuewhich arosefrom this study and deservesfuture attention is the

collection of error/diagnostic messagesthrough the devicedriver/dev/log. This facility

allows easy accessto the messagebuffer from the user level. With this facility, and

the kernel level printf command (print to messagebuffer) the collection of all kinds

of operating system level information becomestrivial. The OS is modified with printf

commandsand the syslogddaemon then collects these. This allows easyexpansionof

monitoring facilities and alsomay help in kernel debugging.

The goal of this research has been the concurrent collection of crash, diagnostic, and

performance data. With the monitor in place, data is continuously being collected. This

data will be helpful in the diagnosis of system crashes. The data can also be used in

future studies of failure prediction and workload/fault correlations.
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APPENDIX A THE EXAMPLES OF COLLECTED DATA

LONG CRASH FILE

***************

A) Information about time of crash, time of system since last

crash and the panic message.

>status

version: SunOS Release 4.1.1 (GENERIC) #i: Fri Oct 12 18:17:55 PDT

1990 Copyright (c) 1983-1990, Sun Microsystems, Inc.

machine name: bach.crhc.uiuc.edu

machine type: SUN 4/470

time of crash: Mon May 20 23:21:01 1991

age of system: 107 days, 21 hr., 11 min.

panic: ialloc: dup alloc

. , ,
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B) Contents of the key registors when crash occur.

>pcb

registers: pc f80a674c

sp f832e9f8

per: as4

flags: 0

uwm 0 wbcnt 0 wocnt 0 wucnt 0

C) List information of all processes at the time crash, such as

process id, program name and process status. Following

example show tiers are 138 processes when crash happened.

>proc

PROC TABLE SIZE = 138

SLOT ST PID PPID PGRP UID PRI CPU

0 s 0 0 0 0 0

1 s 1 0 0 0 30

2 s 2 0 0 0 I

3 s 127 i 127 0 28

4 s 65 I 65 0 26

5 s 202 168 202 0 26

EVENT HAHE

0 f817eac8

0 f823d374 init

0 f823d428

0 ff036568 rarpd

0 f817e61c portmap

1 f817e61c rpc.rquotad

FLAGS

load sys

swapped pagi

load sys

swapped pagi sel

swapped pagi

swapped pagi
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D) Usage of system stacks. In this example, the system used about

I Kby_es memory space (f8478f58 - f8478aTO), which indicates

the system was lightly used when crash happened.

>stack

KERNEL STACK:

FP: f8478a70 END OF STACK: f8478f58

f8478a70:

f8478aSO:

f8478a90:

f8478aaO:

f8478abO:

f8478acO:

f8478bdO:

f8478beO:

,,,.,,..

oo,,,i,,

,,,,.o,,

3 f8478abO f8OO6afc f823ee2c

40 7 ffO12f68 0

a8750 114000c5 f8OcdldO f8475f58

80 9 1 7

f8478a98 0 f81a4cO0 f81a4f44

f818b400 f8475f58 ffOOSb20 f8478b40

c6000 f818b400 0 ff194300

f81a7a70 f8478c10 fSOe2640 f8478c18
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E) Detail info of each process, such as time of process start,

physical address of the program and files opened by the process.

>u 0-137

PER PROCESS USER AREA FOR PROCESS 0

command: proc ptr: f823d2cO sess ptr: f8185150

no cntrl try

current directory structure (at ffO13fe8):

ref i len e38c

try ptr: 0

vnodes: current directory: ffO39cd8 root directory: 0 try: 0

ofile: f81534e8 pofile: f81535e8 lastfile: -I cmask: 0000

PER PROCESS USER AREA FOR PROCESS i

command: init proc ptr: f823d374 sess ptr: f8185150 try ptr: 0

no cntrl try

start: Fri Feb 15 17:09:42 1991

current directory structure (at ffO13fe8):

ref I fen e38c
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vnodes: current directory: ffO39cd8 root directory: 0 try: 0

ofile: f82764e8 pofile: f82Tb5e8 lastfile: -I cmask: 0000

F) Information about files opened in system at the time of crash.

such as size, status and operation of the file,

>file

FILE TABLE SIZE . 582

SLOT TYPE RCNT MSG

0 S 1 0

S S i 0

4 S I 0

5 V 1 0

7 S 1 0

8 V S 0

50 V 1 0

51 S I 0

OPS DATA

_socketops ff652c8c

_socketops ff654a8c

_socketops ff65638c

OFFSET CKED FLAGS

0 ffO24658 read write

0 ffO24668 read write

0 ffO24668 read write

_vnodefops ffOee69c f8170784 ffO24d84 read

_socketops ff65528c

_vnodefops ffO53f3c

o.o*o.,.o* ,,0,oooo

0 ffO24668 read write

23f ffO24668 read wrize

_vnodefops ffOee69c ff649e50 ffO246b8 read

_socketops ff65668c 0 ffO24668 read write



46

SHORT CRASH LOG

9105202321010101380582f80a674cf832e9f8ialloc: dup alloc

where:

910520232101 ;Crash happened aZ 1991 May 20 23 hour 21 minute 1 second

01 ;Hostid 1-bach,

0138 ;There are 138 process in system.

0582 ;There are 582 files in system.

fSOa674c ;Program counter.

f832egf8 ;Stack poincer.

ialloc: dup alloc; panic-messaKes.

DIAGNOSTIC MESSAGES
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Jun 30 17:53:47 polaris vmuniz: idOOOh: block 669508 (1741852 abs):

write: Conditional Success. Data Retry Performed

Jun 30 17:83:47 polaris vmuniz: idOOOh: block 669508 (1741852 abs):

write: Conditional Success. Data Retry Performed

Jul 1 18:33:18 polaris vmuniz: /home/polaris3: file system full

Jul i 18:36:21 polaris last message repeated 6 times

Jul 2 13:30:16 polaris vmunix: is2: Ethernet jammed

Jul 4 13:30:18 polaris vmunix: is2: Ethernet jammed

Jul 5 14:39:50 polaris vmunix: stO: I/O request timeouz>
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